autointent.modules.RetrievalAimedEmbedding#
- class autointent.modules.RetrievalAimedEmbedding(embedder_config=None, k=10)#
Bases:
autointent.modules.base.BaseEmbeddingModule for configuring embeddings optimized for retrieval tasks.
The main purpose of this module is to be used at embedding node for optimizing embedding configuration using its retrieval quality as a sort of proxy metric.
- Parameters:
k (pydantic.PositiveInt) – Number of nearest neighbors to retrieve
embedder_config (autointent.configs.EmbedderConfig | str | dict[str, Any] | None) – Config of the embedder used for creating embeddings
Examples:#
from autointent.modules.embedding import RetrievalAimedEmbedding utterances = ["bye", "how are you?", "good morning"] labels = [0, 1, 1] retrieval = RetrievalAimedEmbedding( k=2, embedder_config="sergeyzh/rubert-tiny-turbo", ) retrieval.fit(utterances, labels)
- name = 'retrieval'#
- supports_multiclass = True#
- supports_multilabel = True#
- supports_oos = False#
- k = 10#
- embedder_config#
- classmethod from_context(context, embedder_config=None, k=10)#
Create an instance using a Context object.
- Parameters:
context (autointent.Context) – The context containing configurations and utilities
k (pydantic.PositiveInt) – Number of nearest neighbors to retrieve
embedder_config (autointent.configs.EmbedderConfig | str | None) – Config of the embedder to use
- Return type:
- fit(utterances, labels)#
Fit the vector index using the provided utterances and labels.
- score_ho(context, metrics)#
Evaluate the embedding model using specified metric functions.
- score_cv(context, metrics)#
Evaluate the embedding model using specified metric functions.
- get_assets()#
Get the retriever artifacts for this module.
- Returns:
A EmbeddingArtifact object containing embedder information
- Return type:
- clear_cache()#
Clear cached data in memory used by the vector index.
- Return type:
None