Source code for chatsky.responses.llm

"""
LLM responses
--------------
Responses based on LLM_API calling.
"""

from typing import Union, Type, Optional

from pydantic import BaseModel, Field

from chatsky.core.message import Message
from chatsky.core.context import Context
from chatsky.llm.langchain_context import get_langchain_context
from chatsky.llm.filters import BaseHistoryFilter, DefaultFilter
from chatsky.llm.prompt import Prompt, PositionConfig
from chatsky.core.script_function import BaseResponse


[docs] class LLMResponse(BaseResponse): """ Basic function for receiving LLM responses. Uses prompt to produce result from model. """ llm_model_name: str """ Key of the model in the :py:attr:`~chatsky.core.pipeline.Pipeline.models` dictionary. """ prompt: Prompt = Field(default="", validate_default=True) """ Response prompt. """ history: int = 5 """ Number of dialogue turns aside from the current one to keep in history. `-1` for full history. """ filter_func: BaseHistoryFilter = Field(default_factory=DefaultFilter) """ Filter function to filter messages in history. """ prompt_misc_filter: str = Field(default=r"prompt") """ Regular expression to find prompts by key names in MISC dictionary. """ position_config: Optional[PositionConfig] = None """ Config for positions of prompts and messages in history. """ message_schema: Union[None, Type[Message], Type[BaseModel]] = None """ Schema for model output validation. """ max_size: int = 5000 """ Maximum size of any message in chat in symbols. If a message exceeds the limit it will not be sent to the LLM and a warning will be produced. """
[docs] async def call(self, ctx: Context) -> Message: model = ctx.pipeline.models[self.llm_model_name] history_messages = [] history_messages.extend( await get_langchain_context( system_prompt=await model.system_prompt(ctx), ctx=ctx, call_prompt=self.prompt, prompt_misc_filter=self.prompt_misc_filter, position_config=self.position_config or model.position_config, length=self.history, filter_func=self.filter_func, llm_model_name=self.llm_model_name, max_size=self.max_size, ) ) result = await model.respond(history_messages, message_schema=self.message_schema) if result.annotations: result.annotations["__generated_by_model__"] = self.llm_model_name else: result.annotations = {"__generated_by_model__": self.llm_model_name} return result