LLM: 4. Structured Output#

Chatsky provides two powerful ways to get structured output from LLMs:

  1. Using BaseModel: To get structured text content (like JSON).

  2. Using Message subclass: To add metadata to messages.

This tutorial demonstrates both approaches with practical examples.

[1]:
# installing dependencies
%pip install -q chatsky[llm]==0.10.0 langchain-openai==0.2.8 langchain-anthropic==0.3.0
Note: you may need to restart the kernel to use updated packages.
[2]:
import os

from pydantic import BaseModel, Field

from chatsky import (
    TRANSITIONS,
    RESPONSE,
    GLOBAL,
    Pipeline,
    Transition as Tr,
    conditions as cnd,
)
from chatsky.core.message import Message
from chatsky.utils.testing import is_interactive_mode
from chatsky.llm import LLM_API
from chatsky.responses.llm import LLMResponse

from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic

# Load API keys from environment variables
openai_api_key = os.getenv("OPENAI_API_KEY")
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")

# Initialize our models
movie_model = LLM_API(
    ChatAnthropic(
        model="claude-3.5-sonnet", api_key=anthropic_api_key, temperature=0
    ),
)
review_model = LLM_API(
    ChatOpenAI(model="gpt-4o-mini", api_key=openai_api_key, temperature=0),
)


# Define structured output schemas
class Movie(BaseModel):
    """Schema for movie details."""

    name: str = Field(description="Name of the movie")
    genre: str = Field(description="Genre of the movie")
    plot: str = Field(description="Plot of the movie in chapters")
    cast: list = Field(description="List of the actors")


class MovieReview(Message):
    """Schema for movie reviews (uses `Message.misc` for metadata)."""

    text: str = Field(description="The actual review text")
    misc: dict = Field(
        description="A dictionary with the following keys and values: "
        "k: rating v [int]: number between 0 and 5, "
        "k: spoiler_alert v [boolean]: is there a spoiler in this review"
    )
[3]:

script = { GLOBAL: { TRANSITIONS: [ Tr( dst=("greeting_flow", "start_node"), cnd=cnd.ExactMatch("/start"), ), Tr(dst=("movie_flow", "create"), cnd=cnd.ExactMatch("/create")), Tr(dst=("movie_flow", "review"), cnd=cnd.Regexp("/review .*")), ] }, "greeting_flow": { "start_node": { RESPONSE: Message( "Welcome to MovieBot! Try:\n" "/create - Create a movie idea\n" "/review - Write a movie review" ), }, "fallback_node": { RESPONSE: Message("I didn't understand. Try /create or /review"), TRANSITIONS: [Tr(dst="start_node")], }, }, "movie_flow": { "create": { RESPONSE: LLMResponse( llm_model_name="movie_model", prompt="Create a movie idea for the user.", message_schema=Movie, ), TRANSITIONS: [Tr(dst=("greeting_flow", "start_node"))], }, "review": { RESPONSE: LLMResponse( llm_model_name="review_model", prompt="Generate a movie review based on user's input. " "Include rating, and mark if it contains spoilers. " "Use JSON with the `text` and `misc` fields " "to produce the output.", message_schema=MovieReview, ), TRANSITIONS: [Tr(dst=("greeting_flow", "start_node"))], }, }, }
[4]:
pipeline = Pipeline(
    script=script,
    start_label=("greeting_flow", "start_node"),
    fallback_label=("greeting_flow", "fallback_node"),
    models={"movie_model": movie_model, "review_model": review_model},
)

if __name__ == "__main__":
    if is_interactive_mode():
        pipeline.run()