LLM: 4. Structured Output#
Chatsky provides two powerful ways to get structured output from LLMs:
Using BaseModel: To get structured text content (like JSON).
Using Message subclass: To add metadata to messages.
This tutorial demonstrates both approaches with practical examples.
[1]:
# installing dependencies
%pip install -q chatsky[llm]==0.10.0 langchain-openai==0.2.8 langchain-anthropic==0.3.0
Note: you may need to restart the kernel to use updated packages.
[2]:
import os
from pydantic import BaseModel, Field
from chatsky import (
TRANSITIONS,
RESPONSE,
GLOBAL,
Pipeline,
Transition as Tr,
conditions as cnd,
)
from chatsky.core.message import Message
from chatsky.utils.testing import is_interactive_mode
from chatsky.llm import LLM_API
from chatsky.responses.llm import LLMResponse
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
# Load API keys from environment variables
openai_api_key = os.getenv("OPENAI_API_KEY")
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
# Initialize our models
movie_model = LLM_API(
ChatAnthropic(
model="claude-3.5-sonnet", api_key=anthropic_api_key, temperature=0
),
)
review_model = LLM_API(
ChatOpenAI(model="gpt-4o-mini", api_key=openai_api_key, temperature=0),
)
# Define structured output schemas
class Movie(BaseModel):
"""Schema for movie details."""
name: str = Field(description="Name of the movie")
genre: str = Field(description="Genre of the movie")
plot: str = Field(description="Plot of the movie in chapters")
cast: list = Field(description="List of the actors")
class MovieReview(Message):
"""Schema for movie reviews (uses `Message.misc` for metadata)."""
text: str = Field(description="The actual review text")
misc: dict = Field(
description="A dictionary with the following keys and values: "
"k: rating v [int]: number between 0 and 5, "
"k: spoiler_alert v [boolean]: is there a spoiler in this review"
)
[3]:
script = {
GLOBAL: {
TRANSITIONS: [
Tr(
dst=("greeting_flow", "start_node"),
cnd=cnd.ExactMatch("/start"),
),
Tr(dst=("movie_flow", "create"), cnd=cnd.ExactMatch("/create")),
Tr(dst=("movie_flow", "review"), cnd=cnd.Regexp("/review .*")),
]
},
"greeting_flow": {
"start_node": {
RESPONSE: Message(
"Welcome to MovieBot! Try:\n"
"/create - Create a movie idea\n"
"/review - Write a movie review"
),
},
"fallback_node": {
RESPONSE: Message("I didn't understand. Try /create or /review"),
TRANSITIONS: [Tr(dst="start_node")],
},
},
"movie_flow": {
"create": {
RESPONSE: LLMResponse(
llm_model_name="movie_model",
prompt="Create a movie idea for the user.",
message_schema=Movie,
),
TRANSITIONS: [Tr(dst=("greeting_flow", "start_node"))],
},
"review": {
RESPONSE: LLMResponse(
llm_model_name="review_model",
prompt="Generate a movie review based on user's input. "
"Include rating, and mark if it contains spoilers. "
"Use JSON with the `text` and `misc` fields "
"to produce the output.",
message_schema=MovieReview,
),
TRANSITIONS: [Tr(dst=("greeting_flow", "start_node"))],
},
},
}
[4]:
pipeline = Pipeline(
script=script,
start_label=("greeting_flow", "start_node"),
fallback_label=("greeting_flow", "fallback_node"),
models={"movie_model": movie_model, "review_model": review_model},
)
if __name__ == "__main__":
if is_interactive_mode():
pipeline.run()