dialog2graph.pipelines.core#
Submodules#
- dialog2graph.pipelines.core.algorithms
- dialog2graph.pipelines.core.d2g_generator
- dialog2graph.pipelines.core.dialog
- dialog2graph.pipelines.core.dialog_sampling
- dialog2graph.pipelines.core.graph
- dialog2graph.pipelines.core.pipeline
- dialog2graph.pipelines.core.prompt_loader
- dialog2graph.pipelines.core.schemas
Classes#
Recursive dialog sampler for the graph |
|
Base class for pipelines |
Package Contents#
- class dialog2graph.pipelines.core.RecursiveDialogSampler[source]#
Bases:
dialog2graph.pipelines.core.algorithms.DialogGenerator
Recursive dialog sampler for the graph
- invoke(graph: dialog2graph.pipelines.core.graph.BaseGraph, cycle_ends_model: langchain_core.language_models.chat_models.BaseChatModel, upper_limit: int, sampling_max: int = 5000000) list[dialog2graph.pipelines.core.dialog.Dialog] [source]#
Extract all the dialogs from the graph
- Parameters:
graph (dialog2graph.pipelines.core.graph.BaseGraph) – used to extract dialogs from it
cycle_ends_model (langchain_core.language_models.chat_models.BaseChatModel) – LLM(BaseChatModel) to find cycling ends of the graph
upper_limit (int) – limits from above repeats_limit used in recursive get_dialogs method
sampling_max (int) – maximum number of found dialogs
- Returns:
list of dialogs
- Raises:
ValueError – “Not all utterances present” if match_dg_triplets returns False
- Return type:
- class dialog2graph.pipelines.core.BasePipeline(/, **data: Any)[source]#
Bases:
pydantic.BaseModel
Base class for pipelines .. attribute:: model_storage
An object to manage and store models used in the pipeline.
- type:
ModelStorage
- Parameters:
data (Any)
- sim_model#
The key for the similarity embedder model in the model storage.
- Type:
str
- model_storage: dialog2graph.pipelines.model_storage.ModelStorage = None#
- sim_model: str = None#
- name: str = None#
- steps: list[dialog2graph.pipelines.core.algorithms.DialogGenerator | dialog2graph.pipelines.core.algorithms.DialogAugmentation | dialog2graph.pipelines.core.algorithms.GraphGenerator | dialog2graph.pipelines.core.algorithms.GraphExtender] = None#
- invoke(raw_data: dialog2graph.pipelines.helpers.parse_data.PipelineRawDataType, enable_evals=False) Tuple[Any, dialog2graph.pipelines.report.PipelineReport] [source]#
Invoke the pipeline to process the raw data and generate a report.
This method processes the given raw data through each step in the pipeline, generating both output data (result of the pipeline) and a report detailing the pipeline’s execution. It measures execution time, performs simple graph comparisons, and optionally evaluates the results with more detailed comparisons.
- Parameters:
raw_data (PipelineRawDataType) – The raw input data to be processed by the pipeline.
enable_evals (bool, optional) – If True, performs additional evaluations and adds more detailed comparisons to the report.
- Returns:
- A tuple containing the final output of the pipeline
and a detailed report of the pipeline’s execution.
- Return type:
Tuple[Any, PipelineReport]