autointent.OptimizationConfig#

class autointent.OptimizationConfig(/, **data)#

Bases: pydantic.BaseModel

Configuration for the optimization process.

One can use it to customize optimization beyond choosing different preset. Instantiate it and pass to autointent.Pipeline.from_optimization_config().

Parameters:

data (Any)

data_config: autointent.configs.DataConfig#
search_space: list[dict[str, Any]]#

See tutorial on search space customization.

logging_config: autointent.configs.LoggingConfig#

See tutorial on logging configuration.

embedder_config: autointent.configs.EmbedderConfig#
cross_encoder_config: autointent.configs.CrossEncoderConfig#
sampler: autointent.custom_types.SamplerType = 'brute'#

See tutorial on optuna and presets.

seed: pydantic.PositiveInt = 42#