autointent.modules.RerankScorer#
- class autointent.modules.RerankScorer(k=5, weights='distance', use_cross_encoder_scores=False, m=None, cross_encoder_config=None, embedder_config=None)#
Bases:
autointent.modules.scoring._knn.knn.KNNScorer
Re-ranking scorer using a cross-encoder for intent classification.
This module uses a cross-encoder to re-rank the nearest neighbors retrieved by a KNN scorer.
- Parameters:
embedder_config (autointent.configs.EmbedderConfig | str | dict[str, Any] | None) – Config of the embedder used for vectorization
k (pydantic.PositiveInt) – Number of closest neighbors to consider during inference
weights (autointent.custom_types.WeightType) –
Weighting strategy:
”uniform”: Equal weight for all neighbors
”distance”: Weight inversely proportional to distance
”closest”: Only the closest neighbor of each class is weighted
cross_encoder_config (autointent.configs.CrossEncoderConfig | str | dict[str, Any] | None) – Config of the cross-encoder model used for re-ranking
m (pydantic.PositiveInt | None) – Number of top-ranked neighbors to consider, or None to use k
use_cross_encoder_scores (bool)
- name = 'rerank'#
Name of the module to reference in search space configuration.
- cross_encoder_config#
- m = 5#
- use_cross_encoder_scores = False#
- classmethod from_context(context, k=5, weights='distance', m=None, cross_encoder_config=None, embedder_config=None, use_cross_encoder_scores=False)#
Create a RerankScorer instance from a given context.
- Parameters:
context (autointent.Context) – Context object containing optimization information and vector index client
k (pydantic.PositiveInt) – Number of closest neighbors to consider during inference
weights (autointent.custom_types.WeightType) – Weighting strategy
cross_encoder_config (autointent.configs.CrossEncoderConfig | str | None) – Config of the cross-encoder model used for re-ranking
embedder_config (autointent.configs.EmbedderConfig | str | None) – Config of the embedder used for vectorization, or None to use the best existing embedder
m (pydantic.PositiveInt | None) – Number of top-ranked neighbors to consider, or None to use k
use_cross_encoder_scores (bool) – use crosencoder scores for the output probability vector computation
- Return type:
- get_implicit_initialization_params()#
Return default params used in
__init__
method.Some parameters of the module may be inferred using context rather from
__init__
method. But they need to be logged for reproducibility during loading from disk.
- fit(utterances, labels)#
Fit the RerankScorer with utterances and labels.
- clear_cache()#
Clear cached data in memory used by the scorer and vector index.
- Return type:
None