autointent.metrics.scoring.scoring_neg_coverage#
- autointent.metrics.scoring.scoring_neg_coverage(labels, scores)#
Supports multilabel classification.
Evaluates how far we need, on average, to go down the list of labels in order to cover all the proper labels of the instance.
The ideal value is 1
The worst value is 0
The result is equivalent to executing the following code:
>>> def compute_rank_metric(): ... import numpy as np ... scores = np.array([[1, 2, 3]]) ... labels = np.array([1, 0, 0]) ... n_classes = scores.shape[1] ... from scipy.stats import rankdata ... int_ranks = rankdata(scores, axis=1) ... filtered_ranks = int_ranks * labels ... max_ranks = np.max(filtered_ranks, axis=1) ... float_ranks = (max_ranks - 1) / (n_classes - 1) ... return float(1 - np.mean(float_ranks)) >>> print(f"{compute_rank_metric():.1f}") 1.0
- Parameters:
labels (autointent.metrics.custom_types.LABELS_VALUE_TYPE) – ground truth labels for each utterance
scores (autointent.metrics.custom_types.SCORES_VALUE_TYPE) – for each utterance, this list contains scores for each of n_classes classes
- Returns:
Score of the scoring metric
- Return type: