autointent.context.optimization_info.OptimizationInfo#
- class autointent.context.optimization_info.OptimizationInfo#
Tracks optimization results, including trials, artifacts, and modules.
This class provides methods for logging optimization results, retrieving the best-performing modules and artifacts, and generating configuration for inference nodes.
- artifacts#
- trials#
- modules#
- log_module_optimization(node_type, module_name, module_params, metric_value, metric_name, artifact, module_dump_dir, module=None)#
Log optimization results for a module.
- Parameters:
node_type (str) – Type of the node being optimized.
module_name (str) – Type of the module.
module_params (dict[str, Any]) – Parameters of the module for the trial.
metric_value (float) – Metric value achieved by the module.
metric_name (str) – Name of the evaluation metric.
artifact (autointent.context.optimization_info._data_models.Artifact) – Artifact generated by the module.
module_dump_dir (str | None) – Directory where the module is dumped.
module (Module | None) – The module instance, if available.
- Return type:
None
- get_best_embedder()#
Retrieve the name of the best embedder from the retriever node.
- Returns:
Name of the best embedder.
- Return type:
- get_best_train_scores()#
Retrieve the train scores from the best scorer node.
- Returns:
Train scores as a numpy array.
- Return type:
numpy.typing.NDArray[numpy.float64] | None
- get_best_validation_scores()#
Retrieve the validation scores from the best scorer node.
- Returns:
Validation scores as a numpy array.
- Return type:
numpy.typing.NDArray[numpy.float64] | None
- get_best_test_scores()#
Retrieve the test scores from the best scorer node.
- Returns:
Test scores as a numpy array.
- Return type:
numpy.typing.NDArray[numpy.float64] | None
- get_best_oos_scores(split)#
Retrieve the out-of-scope scores from the best scorer node.
- Parameters:
split (Literal['train', 'validation', 'test']) – The data split for which to retrieve the OOS scores. Must be one of “train”, “validation”, or “test”.
- Returns:
A numpy array containing OOS scores for the specified split, or None if no OOS scores are available.
- Return type:
numpy.typing.NDArray[numpy.float64] | None
- dump_evaluation_results()#
Dump evaluation results for all nodes.
- get_inference_nodes_config(asdict=False)#
Generate configuration for inference nodes based on the best trials.
- Returns:
List of InferenceNodeConfig objects for inference nodes.
- Parameters:
asdict (bool)
- Return type:
- get_best_modules()#
Retrieve the best modules for all node types.
- Returns:
Dictionary of the best modules for each node type.
- Return type:
dict[autointent.custom_types.NodeType, autointent.modules.abc.Module]