autointent.modules.decision.ArgmaxDecision#
- class autointent.modules.decision.ArgmaxDecision#
Bases:
autointent.modules.abc.DecisionModule
Argmax decision module.
The ArgmaxDecision is a simple predictor that selects the class with the highest score (argmax) for single-label classification tasks.
- Variables:
n_classes – Number of classes in the dataset.
Examples#
from autointent.modules import ArgmaxDecision import numpy as np predictor = ArgmaxDecision() train_scores = np.array([[0.2, 0.8, 0.0], [0.7, 0.1, 0.2]]) labels = [1, 0] # Single-label targets predictor.fit(train_scores, labels) test_scores = np.array([[0.1, 0.5, 0.4], [0.6, 0.3, 0.1]]) decisions = predictor.predict(test_scores) print(decisions)
[1 0]
- name = 'argmax'#
- classmethod from_context(context)#
Initialize form context.
- Parameters:
context (autointent.Context) – Context
- Return type:
- fit(scores, labels, tags=None)#
Argmax not fitting anything.
- Parameters:
scores (numpy.typing.NDArray[Any]) – Scores to fit
labels (list[autointent.custom_types.LabelType]) – Labels to fit
tags (list[autointent.schemas.Tag] | None) – Tags to fit
- Raises:
WrongClassificationError – If the classification is wrong.
- Return type:
None
- predict(scores)#
Predict the argmax.
- Parameters:
scores (numpy.typing.NDArray[Any]) – Scores to predict
- Raises:
InvalidNumClassesError – If the number of classes is invalid.
- Return type:
numpy.typing.NDArray[Any]