autointent.modules.decision.ArgmaxDecision#
- class autointent.modules.decision.ArgmaxDecision#
Bases:
autointent.modules.base.BaseDecision
Argmax decision module.
The ArgmaxDecision is a simple predictor that selects the class with the highest score (argmax) for single-label classification tasks.
Examples:#
from autointent.modules import ArgmaxDecision import numpy as np predictor = ArgmaxDecision() train_scores = np.array([[0.2, 0.8], [0.7, 0.3]]) labels = [1, 0] # Single-label targets predictor.fit(train_scores, labels) test_scores = np.array([[0.1, 0.9], [0.6, 0.4]]) decisions = predictor.predict(test_scores) print(decisions)
[1, 0]
- name = 'argmax'#
Name of the module.
- supports_oos = False#
Whether the module supports oos data
- supports_multilabel = False#
Whether the module supports multilabel classification
- supports_multiclass = True#
Whether the module supports multiclass classification
- classmethod from_context(context)#
Initialize from context.
- Parameters:
context (autointent.Context) – Context object containing configurations and utilities
- Return type:
- fit(scores, labels, tags=None)#
Fit the predictor (no-op for ArgmaxDecision).
- Parameters:
scores (numpy.typing.NDArray[Any]) – Array of shape (n_samples, n_classes) with predicted scores
labels (autointent.custom_types.ListOfGenericLabels) – List of true labels
tags (list[autointent.schemas.Tag] | None) – List of Tag objects for mutually exclusive classes, or None
- Raises:
WrongClassificationError – If used on non-single-label data
- Return type:
None
- predict(scores)#
Predict labels using argmax strategy.
- Parameters:
scores (numpy.typing.NDArray[Any]) – Array of shape (n_samples, n_classes) with predicted scores
- Returns:
List of predicted class indices
- Raises:
MismatchNumClassesError – If the number of classes does not match the trained predictor
- Return type: