autointent.configs.DataConfig#
- class autointent.configs.DataConfig(/, **data)#
Bases:
pydantic.BaseModel
Configuration for the data used in the optimization process.
- Parameters:
data (Any)
- model_config#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- scheme: autointent.custom_types.ValidationScheme = None#
Hold-out or cross-validation.
- n_folds: pydantic.PositiveInt = None#
Number of folds in cross-validation.
- validation_size: autointent.custom_types.FloatFromZeroToOne = None#
Fraction of train samples to allocate for validation (if input dataset doesn’t contain validation split).
- separation_ratio: autointent.custom_types.FloatFromZeroToOne | None = None#
Set to float to prevent data leak between scoring and decision nodes.
- examples_per_intent: pydantic.PositiveInt = None#
Number of examples per intent for few-shot validation. If None, all examples will be used.