autointent.Pipeline#
- class autointent.Pipeline(nodes)#
Pipeline optimizer class.
- Parameters:
nodes (list[autointent.nodes.NodeOptimizer] | list[autointent.nodes.InferenceNode])
- nodes#
- set_config(config)#
Set configuration for the optimizer.
- Parameters:
config (autointent.configs.LoggingConfig | autointent.configs.VectorIndexConfig | autointent.configs.EmbedderConfig) – Configuration
- Return type:
None
- classmethod from_search_space(search_space)#
Create pipeline optimizer from dictionary search space.
- classmethod default_optimizer(multilabel)#
Create pipeline optimizer with default search space for given classification task.
- fit(dataset, force_multilabel=False)#
Optimize the pipeline from dataset.
- Parameters:
dataset (autointent.Dataset) – Dataset for optimization
force_multilabel (bool) – Whether to force multilabel or not
- Returns:
Context
- Return type:
- classmethod from_dict_config(nodes_configs)#
Create inference pipeline from dictionary config.
- classmethod from_config(nodes_configs)#
Create inference pipeline from config.
- Parameters:
nodes_configs (list[autointent.configs.InferenceNodeConfig]) – list of config for nodes
- Return type:
- classmethod load(path)#
Load pipeline in inference mode.
This method loads fitted modules and tuned hyperparameters. :path: path to optimization run directory :return: initialized pipeline, ready for inference
- Parameters:
path (str | pathlib.Path)
- Return type:
- predict(utterances)#
Predict the labels for the utterances.