autointent.context.optimization_info.ScorerArtifact#

class autointent.context.optimization_info.ScorerArtifact(/, **data)#

Bases: Artifact

Artifact containing outputs from the scoring node.

Outputs from the best scorer, numpy arrays of shape (n_samples, n_classes).

Parameters:

data (Any)

model_config#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

train_scores: numpy.typing.NDArray[numpy.float64] | None = None#
validation_scores: numpy.typing.NDArray[numpy.float64] | None = None#
test_scores: numpy.typing.NDArray[numpy.float64] | None = None#
oos_scores: dict[str, numpy.typing.NDArray[numpy.float64]] | None = None#